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Abstract. The stationary electric field, current pattern and coupling losses in a multfilamentary, superconducting, 
twisted, torus-shaped wire are calculated for a torus placed in a homogeneous magnetic field increasing in time at a 
constant rate and parallel to the torus plane. The radius of the wire is considered to be small compared to the mean 
radius of the toms. An important parameter for the problem is the ratio between the twist length of the 
superconducting filaments and the mean radius of the torus. In the configuration considered this parameter is small. 
The coupling losses are approximately inversely proportional to the square of this ratio. Furthermore,  for the wire 
to have unsaturated parts, the analysis shows that the rate of change of the magnetic field must decrease when this 
ratio increases. 

1. Introduction 

Nowadays,  practical use is made of superconductors in large electromagnet systems, e.g., 
accelerator dipoles in the H E R A  system at DESY and superconducting coils in tokamak 
fusion reactors like T-15 in Moscow. The main advantages of using superconducting wires in 
magnets are a large reduction in power consumption compared to conventional ones as well 
as the fact that the wires are easier to handle. However,  important disadvantages are the 
much more complicated electrodynamic properties of superconducting wires compared to 
conventional wires. This is caused by the complicated internal structure of the wire and the 
non-linear behaviour of some components inside the wire. 

A superconducting wire generally consists of many (102-106) filaments of superconducting 
material embedded in a normal conducting matrix: Cu, CuNi or AI. The wire is drawn down 
to the desired diameter and twisted with a twist length L~, in the range 10 to 100 times the 
wire radius a. A cross section of such a wire is given in Fig. 1. 

The general problem of calculating the electromagnetic field in a multifilamentary super- 
conducting wire, placed in a time-varying magnetic field, so called a.c. field, has been studied 
extensively during the last few years [1, 3, 4, 5]. As analytical calculations of the field yield 
only qualitative results, a numerical method was developed [1, 2]. 

Solutions were calculated for simple wire geometries, e.g., straight circular wires in 
perpendicular [1, 3] or parallel [4, 5] applied magnetic fields. In important practical applica- 
tions, however, the wires are used in ring-shaped configurations, e.g., the D-coils in the Next 

* Deceased. 
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Fig. 1. Cross section of a circular multifilamentary wire. 

European Torus fusion reactor [6]. In this article the properties of a D-coil in an a.c. 
magnetic field are studied, using an ideal torus configuration for the wire. 

Here we analytically study the electrodynamic properties of a wire in a ring shape. Of 
main interest are the dependence on the twist length Lp, the mean radius of the ring R 0 and 
the direction of the applied magnetic field of the generated Ohmic losses (known as coupling 
losses) in the wire and the current-carrying capacity at low loss levels. The electromagnetic 
behaviour of the wire can be calculated using Maxwell's equations supplemented with a set 
of constitutive equations. The constitutive equations give a relation between the electric field 
and the current density. Furthermore, an appropriate set of initial and boundary conditions 
must be given. The solution of the problem is not simple, because the constitutive equations 
are nonlinear (due to the presence of the superconducting filaments) and anisotropic. Both 
items will be explained in the next section. However, using some simplifications, as we do in 
this article, we may obtain insight in the behaviour of the wire. 

With respect to the ring-shaped wire, we have to consider three stages to be able to 
describe the complicated spatial geometry. These three stages, describing the multifilamen- 
tary twisted torus-shaped wire, are: 

1. the description of the superconducting filaments surrounded by normal conducting matrix 
material; 

2. the description of a straight twisted multifilamentary wire; 
3. the description of the bent wire in a torus shape. 

In the next section we will give a detailed description of every stage considered. 
We now focus on the magnetic field aspects. The applied time-dependent magnetic field is 

considered to be uniform in space and parallel to the plane of the torus with constant time 
derivative /~A. This field, chosen in the z direction (see Fig. 2) (/~z A) will be perpendicular to 
the wire for coordinates (x, z) = (0,-+R0) and parallel for (x, z )=  (-+R0,0). For other 
coordinates (x, z) on the wire the field is partly perpendicular and partly parallel. 

We consider the centre of the wire to be unsaturated, which restricts the value of [/~A[ as 
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Fig. 2. Circular configuration for the wire with radius a in a torus shape with mean radius Rr. Here a ~ R~. 

we will show. For /~z  a is constant, we calculate the stationary solution for the electric field 
and the currents. Furthermore,  we calculate the coupling losses due to the Ohmic dissipation 

of the matrix material. The currents in the unsaturated superconducting filaments are 
non-dissipative. 

The electric field in a D-coil for a realistic field configuration can be calculated for the 
unsaturated case using the superposition principle. As long as the wire is unsaturated, the 
problem of calculating the electric field and currents is linear. This means that we write the 

applied magnetic field as a Fourier series and calculate the corresponding electric field terms. 
Addition of all the electric field terms gives the resulting electric field, which can be used for 
calculating the coupling losses. Note that this calculation method can only be used as long as 
the problem is linear, i.e. the partly saturated solution, where the nonlinear behaviour of the 
superconducting filaments must be taken into account, cannot be analyzed this way and 
therefore  we will not consider this case. 

Calculations with respect to this configuration can also be performed approximating the 
problem by considering a straight wire and applying a spatially periodic t ime-dependent 
magnetic field. We will compare these results with our exact solution. 

2. The spatial geometry 

In this section we give a detailed description of the geometry of all three stages introduced in 
the previous section. 

In stage 1 we investigate the interior of the wire on the smallest scale: we consider 
superconducting filaments surrounded by normal conducting matrix material. The supercon- 

ducting behaviour of the filaments is described by the critical state model [7, 8]. According to 
this model the relation between the local superconducting current density in the filament ill 
and the electric field parallel to the filament Ell can be written for zero filament radius as 

E ( -Jc ,  Jc) if E H = 0 
J~t = Jc sign(EIt) if Etl S 0 ,  (1) 

where Jc is the critical current density. Ell = 0 means that the filament is unsaturated, while 
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E H ~ 0 holds for a saturated filament. The conductivity of the normal (Ohmic) conducting 
material is o-. 

In stage 2 we regard a scale considerably larger than stage 1, which means that we get a 
more macroscopic view. Here  we consider a straight multifilamentary wire with circular cross 
section. The radius of the wire is a. We consider the central axis of the wire parallel to the z 
direction of the cylindrical coordinate system. The wire is twisted with twistlength Lp. Part of 
the path of two twisted filaments in a straight wire is shown in Fig. 3. We choose a 

coordinate system with the direction parallel to the filaments, the radial direction and the 
direction defined by the outer product of the two aforementioned directions, denoted by the 
perpendicular symbol: 2 .  Recognize that both the r direction and the 2 direction are 
perpendicular to the filaments. The constitutive equations for an unsaturated wire are given 
in this coordinate system by 

(Jr, J±, Jll) = (o'±E,, o'zE±, aj{ I + %IEII), (2) 

with 

1 - A  
o-. -- 1 +----~ o ' ,  (3 )  

o'hl = (1  - A ) o - ,  ( 4 )  

with A the fraction of superconducting material. Notice that in the normal conducting 
conductivity matrix in this coordinate system only the principal diagonal elements can be 
non-zero. 

We can calculate the constitutive equations in the cylindrical r, 4~, z coordinate system 
using the following transformations: 

% = cos ~b e+ - sin ~b e z , (5) 

ell = sin ~p % + cos ~ % , (6) 

with 

L_~ 
2 

i, 

Fig. 3. Schematic view of the path of two twisted filaments in a straight wire. 



2 7rr 
tan O - 

Lp 

Superconducting, torus-shaped wires 399 

(7) 

This gives for the constitutive equations for an unsaturated wire 

(J~, J6, J~) = (o'+E~, Aj~ I sin O + cr~E6, hJ~l cos 6 + (r±E~). (8) 

The first terms of J6 and j~ result from the superconducting current density of the filaments 
while the second term is just an Ohmic term resulting from the matrix material. In the 
normal conducting conductivity matrix we now also have off diagonal elements that can be 
non-zero. Notice that the current density in the r direction has no superconducting term 
because the parallel direction is perpendicular to the r direction. In case the wire is 
saturated, j~ and Jz contain an extra term due to the fact that Ell ~: 0. This extra term is not 
given in Eq. (8). 

Recognize that 0 is a function of r only and that the trajectory of a filament is given by 

Lp 
z = 6 + z0 ,  (9) 

with z 0 a constant. 
In Carr's approach [9] the electromagnetic field and current density are averaged over an 

area which is large compared to the microstructure and small compared to the macroscopic 
view. Carr showed that the Maxwell equations hold for a multifilamentary superconductor 
when the electromagnetic quantities are averaged over a volume with dimensions of the 
order of a filament cross section. 

In the last stage, we investigate the largest scale and consider the bent wire in a torus 
configuration with radius of the central axis R 0. Note that this bending affects the path of 
every filament in the wire, except the one along the central axis. The path of one filament in 
this torus shaped, twisted wire is shown in Fig. 4. 

We want to perform the calculations in the natural r, 4), 0 system where 0 represents the 
angle on the torus with the positive x-axis and r and q5 are the cylindrical coordinates 
perpendicular to 0. The configuration and definitions are outlined in Fig. 2. x, y, z expressed 
in r, (b, 0 is given in Eq. (20) of the next section. 

Before we can give the constitutive equations for this bent wire, we need to know the 
trajectory of a twisted filament in the bent wire. The constitutive equations for a straight 
wire are previously described (stage 2). When we start with this configuration we see that 
due to the bending of the wire the parallel direction is changed and becomes a function of r, 
4) and 0. The stress parameters in the wire will influence the resulting parallel direction after 

Fig,. 4. Schematic view of the path of a twisted filament in the torus shaped wire. 
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bending. We do not include these phenomena in the analysis and assume purely geometrical 

deformation resulting in 

ell : sin ~b e~ +cos  Oeo , (lO) 

with tan qJ given by Eq. (7), to calculate the trajectory of a filament fulfilling this condition. 

Now we calculate the ~b(0) dependence in case of this assumption when r is not a function of 
0. This means that we fictitiously adapt the twisting of the filaments in such a way that the 
angle ~0 is not a function of ~b and 0. A (not normalized) vector in the II direction (tangent to 

the filament) Pll is found as the derivative of the position vector: xex + yey + zez along the 

filament, i.e. 4~ = 4~(0) and r is constant: 

Pll = [Oox + O,x do¢]e x + [Ooy + O~y do¢]ey + [OoZ + 04,z do~b]e z 

= cl(r, O, ~b(O), do~b)e r + c2(r, O, 4~(0), do4~)e, + c3(r, O, ~b(O), do~b)e o . 

(11) 

(12) 

In order  to satisfy Eq. (10) we obtain the requirements: 

c 1-=0 and 

which gives: 

c I ~- 0 and 

with solution: 

C 2 2 ~ r  
- - - - - t an  ~ =  , (13) 
C 3 Lp 

277" 
doth = -7-- (Ro + r cos &) (14) 

=2arctan[  tan(0° r2 
Roo-r  Lp )1 +~b° (15) 

and inverse: 

Lp [ ( R o -  r ) tan~ /2  ] 
arctan ~--/---~ + 00 (16) 

0 -  L Y R , - - r =  J 

Notice that the important periodicity parameter  is L p / ( 2 ~ V ~  o - r 2) and for R o ~> r we see 

that the trajectory of a filament is given by 

Lp 
0 = ~b + 0 o -= k~b + 00, (17) 

21rR o 

with 0 o a constant. When we compare this result with eq. (9) we see that for R o ~> r the twist 
is not influenced by the bending of the wire. 

Now the constitutive equations read: 

(J,, J,,  Jo) = (~r±Er, tan ~ Jo + °-lE, ,  Jo + °-lEo) (18) 

with 

J0 = AJ~I cos ~0. (19) 
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Summar iz ing  we can say that  the geomet ry  is fully de te rmined  by three parameters :  a, Lp, 

and R 0. We calculate the electric field and the currents in case a is very small c o m p a r e d  to R 0 

and Lp is smaller than 27rR 0. We consider k =- L p / ( 2 c r R o )  an irrational number .  This means  

that  the path of  a filament is never  closed so there exists no superconduct ing  closed path.  A 

consequence  of  this assumption is that  no resonance appears  in the system. This no- 

r esonance  condi t ion will be explained in the next sections. Note  that  the shown closed path  

of  a fi lament in Fig. 4 does not  satisfy this condit ion.  

3. Vector analysis in the toroidal coordinate system 

In this section we describe the impor tant  calculus in the toroidal  coordina te  system [10]. The  

(u 1, u2, u3)---(r ,  ~b, 0) system is a positively or iented or thogonal  coord ina te  system. The  

coord ina te  t ransformat ion  for the vector  x with x, y and z coordinates  to the new coordina te  

system reads 

(x, y, z) = ((R 0 + r cos 4)) cos 0, r sin ~b, (R 0 + r cos &) sin 0 ) .  (20) 

The  infinitesimal arc length and volume are given by: 

d/2 2 2 2 2 2 2 
= h l d u  1 + h 2 d u  2 + h 3 du 3 , (21) 

d V =  h l h z h  3 du  I du  2 du 3 , (22) 

respectively.  We calculate h i using: 

2 ( O x ] 2 + ( O y ] 2 + ( O z ) :  (23) 
h i = \ O u i  / \ O u i /  \ O u i /  • 

which gives for  the e lementary  lengths: 

h ,  = h r = 1 ,  (24) 

h 2 = h~ = r ,  (25) 

h 3 = h o = R o + r cos 4) • (26) 

The  unit vectors  in this coordina te  system are given by: 

1 Ox 
e i -- h i  Oui (27) 

and in explicit nota t ion:  

e r = cos 4) cos 0 e x + sin & e~ + cos 05 sin 0 e: , (28) 

% = - s i n  (h cos 0 % + cos 4) % - sin 4) sin 0 e_ , (29) 

e o = - s i n  0 e x + cos 0 e . .  (30) 
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The inverse transformation can easily be derived. Some important vector operations on a 
vector read: 

(V × A)I -- 1 [0@2 (h3A3) - 0 ] h2h3 Ou----~3 (h2A2) , 
(31) 

1 0 
V" A -  h,h2h~ 3 ~i ~ (hlh2h3Ai/hi)  " (32) 

The remaining components of (~r × A) are obtained by cyclic interchanges of the suffixes. 

4. Definition of the problem 

Using the results of the previous section we can derive the set of equations describing the 
problem in the r, 05, 0 coordinate system. 

The Maxwell equations in case of a stationary problem read 

1 1 
(V  × E ) r  = -r  Oe~E° Ro -~- " A [aoE ~ + sin 05Eo] = - B  r , 

05 FCOS 

"A 
1 [-OoE r + cos 05Eo] = - B ~  , (V × E)+ = -OrE o R o + r cos 05 

(33) 

(34) 

07 x E ) o  = i [0r(rE~) _ O,~Er] = __/}o A . (35) 
r 

The applied magnetic field/~A in the z direction can be written in its r, 05, 0 components:  

"A 
B A = B z (cos 05 sin 0, - s in  05 sin 0, cos 0 ) .  (36) 

Conservation of the bulk current density j in the interior of the wire can be written as 

• . j  = _1 [Or(rjr) + 06j6 ] + 
r R o + r cos 05 

[cos 05 j~ - sin 05 j ,  + aoJo] = O. (37) 

At  the surface of the wire r = a we consider a surface current with components J ,  and Jo in 
the 05 and 0 direction respectively. From the fact that no current flows out of the wire at the 
boundary r = a, conservation of current can be written as 

- ( R  0 + a cos 05 ) a ] r (  r = a) + ( R o + a cos 05) O , J ¢, - J , a sin 05 + a OoJ o = O. (38) 

We consider the surface current at r = a to flow in the direction of the filaments, i.e. 

( J , ,  Jo) = (sin 0a JII, cos 0, JII), 

with 

2~ra 
tan $a - L p  

In case the interior of the wire is unsaturated, i.e. Ell = 0, we obtain 

(39) 

(40) 
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E o = - t a n  t/, E+ . (41) 

The boundary conditions can easily be formulated: the electric field and currents are 

periodical functions of 4) and 0 with period length 2rrn with n = 1,2, 3 . . . .  ; the electric field 

and currents are bounded for r = 0 and no current flows out of the wire at r = a. 

Using the constitutive equations we see that we have to solve 4 unknowns: Ee,, Er, Jo and 
JII for which we use the Eqs (33), (34 + 35), (37) and (38). The calculations are outlined in 

the next section. 

5. Calculation of the electric field and currents 

In this section we calculate the electric field components  and the currents using the set of 

equations described in the previous section. The differential equations cannot be solved 

directly, so we use a perturbation series in r. This is legitimate as a ~ R 0. We calculate a first 

order  accurate solution for the case that no resonances appear  in the system, i.e. k is an 

irrational number.  The calculations of all 4 unknowns E , ,  E,,  J0 and JII are identical except 

for the implementat ion of the boundary conditions. We show the calculation of Ee, in detail 

and summarize  the calculations of the other 3 unknowns. 

Substituting Eq. (41) and (7) in (33) gives: 

Lp r • A 
2rr Oe~Ee, + ~ OoEe, = Lp[~¢ + ~ [Lp cos 4)B, + 27r sin 4)Ee, - 2~r cos 4) Oe, Ee, ] . (42) 

Observe  that E~ is the only unknown in this equation. The last term in this equation is small 

compared  to the first one for a ~ R 0. The one but last term is considered to be small. This 

assumption must be checked later. Then the homogeneous equation 

Lp 
2rr Oe, Ee, + ~ OoEe, = 0 (43) 

has the solution 

E H O m  = A(r)F(O/k - 4)) (44) 4, 

where F is any (smooth enough) function with argument (O/k - 4)). The solution has to be a 

periodic function of 4) and 0 with period length 2~rn. As k is irrational, the periodicity in 4) 

and 0 imposes F to be a constant. Fur thermore,  using the boundedness of Er, one can easily 

show with eq. (35) that A(r) must be zero. Together  this results in: FU°m ------ 0. This explains 

what we mean by 'no resonances appear  in the system': now there has to be an applied field 
to obtain a non-zero electric field and non-zero currents. 

We now calculate the particular solution of Eq. (42). For this purpose we write E~ as a 
power  series in r: 

_2 L7(2) E 4,=e~ ° )+re~  1)+,  r~e, + " ' .  (45) 

This gives 
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Lp OoE(,O)= LpBA ' 2zr O~,E~ °) + -~o 

Lp OoE~) = Lp 21r 27r 
2~rO~E~1) +Ro R--o c°s 95/~A + R---oo sin 95E~°) Ro 

for E~ °) and E~ ~) respectively. The solution is 

(46) 

- - - c o s  95 O,E~  ) (47) 

"A 
E~ °) - LpBz [sin 95 sin 0 + k cos 95 cos 0] (48) 

2~'(1 - k 2) 

- - c o s  0 - 
/~Ak(1 + 2k 2) 

(1 - k2)(4 - k 2) sin 295 sin 0 - 
B~k2(5 + k 2) 

2 ( l _ k 2 ) ( 4 _ k 2  ) cos295cos 0 .  
(49) 

Recognize that the one but last term of eq. (42) indeed is small compared to the left hand 
side for a ¢ R0, which was assumed. The higher order Fourier terms in 95 appear because h o 
contains the term r cos 95, see Eq. (26). 

We obtain an equation for E, similar to the equation for E6 by adding Eq. (34) and (35). 
It contains terms E , ,  which is known. The homogeneous solution is zero, for reasons 
similarly applying to E6, except for a possible term which is only a function of r. This term 
being non-zero would give rise to an effective current into or out of a torus shell, which is 
forbidden. 

The expansion of E, in powers of r results in 

E~O)_ Lp/~A 
27r(1 - k 2) [ - cos  95 sin 0 + k sin 95 cos 0],  

E~,) = / ~ ( 4  - 9k 2 + 2k 4) 
~-~S~T~-4---~-- ~ sin 0 + 

B~k(1 + 2k 2) 
(1 - k2)(4 - k 2) cos295 sin 0 

B k (5 + k 

2 ( 1 _ k 2 ) ( 4 _ k 2  ) sin295cos O. 

(5o) 

(51) 

J0 is calculated using Eq. (37): 

Lp Lp (cos 95 
27r O,j  o + Roo O°j° - Ro 

~) Lp Lp 
+ (Orrjr + O¢'trsE~') - Roo cos 95 Jr + R00 sin 95 o-±E+ 

27rr 
+ ~ [Ooo'.E ~ + sin 95 ]0 - cos 950~jo]. (52) 

The homogeneous solution is zero by repeating the same argument, for E~, except for the 
term which is only a function of r. This term is excluded however, because a periodic field 
results in periodic currents. The expansion of J0 in powers of r results in 

j~oO ) _ o'±[~ALp (2 - 5k 2) 
2~ k2(1 - k 2) cos 0 .  (53) 

j~0 ') is not calculated because we need E~ 2) and E(r 2) which are not calculated. For the 
calculation of the surface current we use Eq. (38): 
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- g l ( R 0  + a cos 4,)aEr(r = a) + (R o + a cos 4,) sin qJa O+Jll 

- a sin 4' sin O.Jii + a cos qJa OoJ o = O. 

405 

(54) 

Using the consistent approximations 

1 (27ra~ 2 ((~pp)4) 
c o s  = l -  / + o  

sin ~b = L---~ + 0 

(55) 

(56) 

we obtain 

Lp 
27r 0,~Jii + ~ OoJH = Lp o'±Er(r = a) 

a 
+ ~ [Lp cos 4, o'lEr(r = a) + 2~- sin 4, JII - 27r cos 4, a4~Jii ] 

+ ~ o  \ Lp / 
(57) 

Again the homogeneous solution vanishes and the expansion of JII in powers of r results in 

~,~A{ Lp ~2[ 1 + k 2 sin 4, sin 0 + 2k ] 
Jll °) : - o - . o ~  ~ ~---~] [ (k + l ~ - ( k - -  1) 2 (k + 1)2(k - 1) 2 cos 4, cos 0 , (58) 

°- / )A Lp [ 2 - 5 k 2  

/ I l l )  --  27r  L 2k2(/~ + l~-k 1 )  
cos 0 + 

k(12 + 43k 2 - 17k 4 - 2k 6) 

2(k + 2)2(k + 1)2(k - 1)2(k - 2) 2 
sin 24, sin 0] 

o'±[3ALp k2(40 + 7k 2 - l l k  4) 
+ 2-----~- 2(k + 2)2(k + 1)2(k - 1)2(k - 2) 2 cos 24, cos 0 .  (59) 

We can check the expressions for the bulk and surface current by calculating the total 
current through a cross section: 0 is constant. Jo and Jo must, in any order of a, fulfil the 
equation 

f ;~  Joa d 4 , +  f_~ f:  jor d 6  dr = 0 .  (60) 

The first and second order expressions in a are 

f_~ Jll °) cos qJaa d4, = 0 ,  (61) 

f ~  J~')a 2 d 4 , +  f;~ ~: j~°)r d4, dr  = f ~  Jll 1) cos ~b a a 2 d ~ +  ~ f:  j~°)r d4, dr 

= f oJl,"a d4,+ fo ;7'rd4,dr+ O('¢) 
: 0 + O(a3) ,  (62) 
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which means that up to the order  of calculation of the expressions, conservation of current is 
fulfilled. The surface current through the stated plane is, second order accurate in a 

f~v "A 2 (2 -- 5k 2) 
1(1),,2 d~b = criB z Lpa 0 (63) "11 " 2 ~ 7 ~  ) cos . 

6. Interpretation 

In this section we will discuss the consequences of the solution derived in the previous 

section. We calculate an upper  bound on IBAI for the centre of the wire to be unsaturated. 

Fur thermore  we calculate the coupling loss power density for the unsaturated wire and we 

give an interpretation of the expressions in case k is small. We will also discuss the 

assumption of a stationary solution. 

The  maximum value of I*}A[ for which the centre of the wire is unsaturated can be 

calculated using 

., Jo < J c .  (64) I J, Ir=°= r=O 

For  small values of k this gives: 

AjcLp (65) 
IBAI < 4rrRgo.  • 

Notice that ]/}m I must be very small for great values oP'R 0 for the wire to be unsaturated. 

Due  to the shielding currents the maximal transport  current at low losses (/max) is for small 

values of k approximated by 

Imax= rraZ[ Ajc-2O'±lBAl 2~k2].  (66) 

The loss power density in the unsaturated case reads: 

  LLf; P/Vol = V01 (E21 + E~)(R° + r cos 4 ) r  dO d& d r ,  

3 2 -  168k 2 + 232k 4 -  79k 6 + 16k 8 + 3k I° 

8k2(1 - k2)2(4 - k2) 2 
2 , - ~ A  ,,2 

a I,/J z ) cr I 

(67) 

64 + 32k 2 - 28k 4 + 4k 6 L 2 
+ 8(1 - k2 )2 (4 -  k2)2 47/.2 (BA)2% [W/m3],  (68) 

with 

Vol = 2rcRoa 2 , (69) 

_=~I) (70) E l  = E~ '~ + rE~ '~ and E r = E~r°)+ "~r " 
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The first and second term of Eq. (68) are due to the parallel and perpendicular component  
' A  of the applied field B z , respectively. 

The expressions for k small (here Lp is  constant and R 0 is large) for the electric field 
components ,  the surface current, the bulk current density and the coupling loss power 

density are 
"A "A 

B z Lp B z r 
E r -  27r cosd) s i n 0 + T s i n 0 + O ( r  2), (71) 

"A "A 
B z r  

E4) _ B z Lp s i n  ~b sin 0 c o s  0 + O ( r  2) (72) 
2~  - - - Y -  ' 

27rr 
E ° -  Lp E+, (73) 

L)2  "A BzLp a "A P 
Jtt = - ° -±Bz  ~ sin ~b sin 0 - o-± 27r k2 c o s  0 + O ( a  2) , (74) 

" A  
BzLp  1 

Jo = o'~ ~ k2 cos 0 + O(r) , (75) 

Z 

P/Vol - cr± (B z )2 ~ + 4 k 2 + O(a3) '  (76) 

These relations are depicted in Fig. 5 for ~b = 7r/4 and parameter  setting: a = 0.015 m, 
Lp = 0.43 m and R 0 = 7 m. Every field component is scaled on its own maximal value. E r and 
JII consist mainly of the parallel field term (the second term in Eqs (71) and (74)). In E ,  and 
E o mainly the perpendicular term is present (the first term in Eq. (72)). The parallel field 

term has a small influence because Ee~(O = 0 )  is non zero. In Fig. 6 E~ scaled on the 
maximum value is given as function of 0 for several values of q5. The parameter  setting is not 
changed. As can be seen, E+ changes sign in every cross section for this parameter  setting. 

Recognize that only Eo is bounded for k ~ 0. The singularity of E r and the currents can be 
understood as follows: a /3A component  parallel to the axis of a twisted wire causes a bulk 

current  to flow in the direction of the magnetic field and a surface current in the opposite 

. . . ,  / \ 

~- i / /  \', ", : , 

~4 i I /  . \ , ,  . ' ,  

., ,,//"... \ 

! , t ' 1 ' \  ,: ,\', , t,, 
, / \', ', e , / , '  

-o.so~ \, ." // , ., ,,, 

-i.~o~' \ / "k~/'/ "'--:,, 
Fig. 5. Scaled value of E ,  E,,  E, and JII as a function of  0 for ~ = ~ / 4 ,  a = 0.015 m, L ,  = 0.43 m and R 0 = 7 m. 
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i .  o~v ~ 

o. /! _-_ \\ /!___ \\ 4' = -4~r/8 

4' = -3,~/8 
4' = -2~r/8 
¢, = - ~ / 8  

4 ,=0  

4' = r /8  

4' = 2~18 

4' = 3,r/8 

4'=4=/s 

Fig. 6. Scaled value of E+ as a function of 0 for several values of 4>. a = 0.015 m, Lp = 0.43 m and R 0 = 7 m. 

direction, both currents proportional to the length of the wire placed in this field. Due to the 
twisting of the wire, the penetrated flux is linear proportional to the length of the wire in the 
parallel field. At 0 = -+ 7r/2 the currents are very small compared to the values for 0 = 0, 
which means that the current loops have closed via the r direction. This causes high values of 
E, in these closing regions. A schematic view of the current pattern in the interior if the torus 
is given in Fig. 7 for small k. The surface current is not given but has the same pattern as the 
bulk current but with opposite sign. 

In the Next European Torus reactor configuration k is less than 1/100 which means that 
IBAI has to have a very low value for the wire to have unsaturated parts. Furthermore the 
coupling losses will be high because they are inverse proportional to k 2. The applied 
magnetic field on the D-coil largely exceeds our derived upper bound for IBAI which causes 
the wire to become saturated if  a stationary current pattern is reached. Our analysis does not 
include screening effects which hold up the penetration of a time varying applied magnetic 

Bz 

Fig. 7. Schematic view of the current pattern in the interior of the wire for small values of k. The surface current 
(not drawn) has the same pattern as the bulk current but with opposite sign. 
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field. Calculations including screening effects have been performed using a straight twisted 

multifilamentary wire in a parallel field in the z direction [4, 5]. Turck arrived at a diffusion 

equation for the current density in the r direction Tr: 

02Tr __ 1 0 T r 

Oz 2 D Ot ' 
(77) 

with D ~ 2 x 10 4 m2/s for a composite superconductor. The analysis is focussed on Tr, the 
component  causing the singular behaviour of the coupling losses. The diffusion equation 
results in a time constant r for T r of 

g 2 

r -  2D ' (78) 

with 2L the length of the wire. Applying this analysis on the torus with L ~- r rRo /2  would 
lead to a time constant 

2 9 

r ~ - -  (79) 
8D 

For  R 0 = 7 m the value r ~ 3 x l0 s s is found, which means that in expected applications no 

stationary current pattern is reached. Notice that this is a rough estimation of the screening 
effects, which do not take into account the specific torus shape of the wire. A complete 
analysis of the time dependent  case requires a numerical approach. 

7. Approximation of the bent wire problem 

In the previous section we calculated the solution for the ring shaped wire in the toroidal 
coordinate system. Another  approach for calculating the field and currents in this toroidal 
configuration is to consider a straight wire and apply a spatially periodic time dependent  
magnetic field. In the previous sections we have calculated the solution for the torus and 
therefore  it is interesting to compare these two solutions. 

The transition from the toroidal to the cylindrical configuration and the definitions 
concerning this transition are given in Fig. 8. In general we would have to construct the 

transformation between the r, ~b, 0 system and the r, 4~, z system. We do not perform these 
calculations but use a different approach as we are only interested in the zero-th order  
solution in r of the fields and currents. We consider the general form of the applied magnetic 
field in cylindrical coordinates. A constraint on this form is that the field must be periodic in 
z with periodicity length 2~-R 0. We also take only the lowest Fourier mode in ~ into 
account. The amplitude of the field parallel and perpendicular to the straight wire can be 

chosen independently. The reason for applying this strategy is as _follows. The cumbersome 
form of the differential operators in Eqs (33)-(35)  is transformed into an easy one, at the 
cost of a more difficult applied magnetic field. 

Now this strategy will be applied in detail. We use Maxwell's equations and conservation 
of current in cylindrical coordinates. We have to calculate the applied magnetic field in this r, 
q~, z coordinate system. The field must satisfy 
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O = 2 r ~ z = L  

i 

! 

Z 

O=O~z=O--~ ._ ,  ".x 
Fig. 8. Transition from the toroidal configuration to the cylindrical configuration. 

V × B A = 0 ,  (80) 

V" B A = 0 .  (81) 

Basic solutions for this field contain modified Bessel functions in r and Fourier components 
in 05 and z. 

Further we need two dominant terms for the applied field: 

Bx A ~/}A w s i n / z z ,  (82) 

/~A "A 
B IIw cos /xz ,  (83) 

"A while By ~ O. Here/x  = 27r/L and L = 2erR0, the periodicity length of the applied magnetic 
field and the subscripts _Lw and Ilw stand for perpendicular and parallel to the wire, 
respectively. The /9  z and B m term account for the perpendicular and parallel component of 
the applied magnetic field respectively. For representing the exact torus solution, as given in 
the previous sections, the applied field has to take into account all the terms in the right hand 
side of the equations for calculating the terms in the power series of the electric fields. The 
applied field we derive in this section is only exact for the zero-th order term of the electric 
fields. The applied field we use is 

[ ] "A 
" A I~(tzr) cos ~b sin tzz + Bi iwll( lxr  ) sin ~z  BA = 2 B l  w io(t.tr) tzr J (84) 

"A "A 2Ii(/zr) 
B~ = - B ± w  - -  sin ¢ s i n / z z ,  (85) 

/zr 

/~z A "A "A (/xr) cos ~b cos / zz .  (86) = Biiwlo(tXr ) cos I~z + 2B±wI  1 

Notice that for r---~ 0 this field has an identical form compared with the field given in toroidal 
coordinates, Eq. (36). The resulting x and y components are 

/~A = 2/3~[ I°(/zr)F Ii~m,)/ COS24 ~ / , . . q  sin /~z + /~A 2I,(tzr) sine ¢ sin(/xz) 
~ r  J ±w /~r  

'A + Bi iwl l ( t zr  ) cos ~b s in /xz ,  (87) 
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'A "a [ 2Ii(/~r) ] "A 
I°(l~r) ~r  By = B . , , 2  sin 05 cos 05 sin g z  + BIiwll(txr ) sin 6 s in / zz .  ( 8 8 )  

Here  I , (x)  are modified Bessel functions [11]. 
The solution for the unsaturated case and no resonances appearing in the system is 

" A l ,(Ixr) 
Er= 2B ±wCl 

tzr 
"A r 

- -  [ - cos  05 sin Uz + q sin 05 cos/~z] + BII w U Io(ur  ) sin k~z 
q 

_ [~A w 2rll(txr)2 [ - s in  05 cos ~z  + q cos 05 sin/~z] , (89) 
1 - q  

",4 [ Ix ( /x r )  ] r  " 
E 6 = 2 B ± w C l  Io(tZr) ~-~ ] l s m 0 5 s i n l z z + q c o s 0 5 c o s g  z] 

" A I i ( u r )  
- B IIw - -  c o s / x z ,  (90) /x 

27rE 
E ~ -  L,fp E+,  (91) 

with c 1 = Lp/(27r(1 - q2)),/~ = 27r/L and q = Lp/L.  When we use approximations for Io(x ) 
and ll(X) for small x [11] we obtain for the magnetic fields 

B A ' A  " A  ~ r  = B +w sin/~z + B IIw ~ -  cos 05 sin/xz + O ( r  2) , 

• ,4 .,4 /~r By = BLI w ~ -  sin 05 s i n /~ r+  O(r2) ,  

= , 4  , 4  B IIw cos I~z + B ±wl~r cos 05 cos l~z + O(r 2) . 

(92) 

(93) 

(94) 

Note that these expressions include the dominant terms of Eqs (82) and (83). The 
approximated electric field components are 

Er  = B ±wCI[_Cos'A 05 sin ktz + q sin 05 cos/~z] + Bii w',4 qr sin g z  + O ( r  2) , 

" A  - "A r 
E , =  B ±wcl[sm 05 sin/zz + q cos 05 cos/xz]  - B i i  ~ ~ cos /ZZ + O ( r  2) , 

27rr 
E z -  Lp E + .  

(95) 

(96) 

(97) 

We calculate J0 using the approximations of the electric field components: 

Lp o-± 
Jo - Y 

/~A 27r q(1 + q2) ',4 
. . . . .  c 1 o'± rB i w cos  05 cos  tx z ~.q IIw cos  i,~z Lp I - q2 

2~r q2 
' A  • 2 2cI°'±rB±w sm 05 sin p~z + O(r 2) . 

Lp 1 - q  
(98) 

With the approximations the coupling loss power density in the unsaturated case reads 
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or ± L 

P/Vol= ~ol fJ f ~  f , ° ( e ~  + E ~ ) r d z d f b d r ,  

( 4 + q  2 )  Z,,~a ,2 l + q  2 L~ "A Z 
- -~-- - -  ( B  ±w) o-± [ W / m  3] 16q a I, Diiw) Or± + 2(1 q2)2 47r 2 

(99) 

(100) 

with 

Vol = zr La 2 , (101) 

E l = E6 . (102) 

The expressions nicely separate the contribution of the parallel field component from that of 
the perpendicular one. One can see that the singular behaviour for q ~ 0 is due to the field 
component parallel to the wire. 

" A  ' A  " A  Now we consider Blw = BII w = B z . Now recognize that E~ )) and E(, °) for the torus 
solution are exactly represented in E+ and E r for the straight configuration considered in this 
section, which should be the case. The terms E~ ~) and E(r ~) are not exactly represented in E6 
and E r for this straight configuration but the terms are identical for k---~ 0 and q ~  0. The 
zero-th order current densities are identical in both cases for k ~ 0 and q ~ 0. Notice that for 
k ~  0 and q ~  0 the losses for the torus and this straight wire are identical. 

It can be concluded that the toms problem can be approximated by a straight wire in a 
spatially dependent magnetic field for small values of k. Furthermore the expansion of the 
magnetic field in a Fourier series, as was mentioned in the introduction, can best be 
performed in this straight wire configuration. 

8.  C o n c l u s i o n  

In case of a stationary solution, the analytical analysis of a multifilamentary, superconduct- 
ing, twisted, toms shaped wire in a time varying magnetic field can be performed. 
Expressions for the electric field and currents have been obtained. 

Basic assumptions for the shown analysis are: 

1. the problem is stationary; 
2. no saturation occurs (the problem is linear); 
3. Carr's anisotropic continuum model can be applied; 
4. the shielding currents at the surface of the wire can be taken into account using a 

(linear) surface current, which flows in the filament direction; 
5. the radius of the wire a is very small compared to the mean radius of the torus R 0 and 

the twist length Lp is less than 27rR0; k = Lp/(2z'Ro) is an irrational number; 
6. the solution can be written as a series expansion in r. 

Higher Fourier modes appear in the ~b-dependence of the solution because h o contains the 
term r cos th. As long as the wire is unsaturated the problem is linear which means that for 
calculating the solution of complicated field patterns the superposition principle can be used. 

For small values of k the coupling losses increase inversely proportional to k 2 whereas the 
rate of change of the magnetic field must be small for the wire to be unsaturated. E~ is 
bounded but E, and the bulk and surface current are singular. This is caused by the parallel 
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magnetic field component. The current loops close via the r direction causing high values of 
E r in these closing regions. These properties can cause severe complications for the use of 
superconducting wires in the Next European Torus fusion reactor. An important extension 
of the problem would be the calculation of the time dependent response. Furthermore, for 
small values of k the torus problem can be approximated by a straight wire in a spatially 
dependent magnetic field. 
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